
Core Performance Tricks & 
Common Mistakes



3 Types of Client Performance Problems

CPU - Game Thread

CPU - Render Thread

GPU

60ms

60ms

18ms

CPU - Game Thread

CPU - Render Thread

GPU

12ms

60ms

60ms

CPU - Game Thread

CPU - Render Thread

GPU

14ms

60ms

18ms

CPU - Game Thread

CPU - Render Thread

GPU

16ms

16ms

16ms

● Too much going on with gameplay!
● LUA scripting issues, especially with player scaling
● Too many animated meshes
● Many attached objects on player with collision
● Various types of custom animation, ui, or physics

Game Thread Bound

Render Thread Bound

GPU Bound

Ideal

CPU/GPU in Profiler Issue Type Possible Reasons & Examples

● Too many objects, or to process rendering!
● Extremely high mesh counts
● Too many overlapping shadows & lights (esp. terrain)
● Overly complex UI in the wrong context
● Missing distance culling, or showing too much of map

● Graphics card not powerful enough!
● High particle density and particle size on VFX
● Overlapping decals or overlapping lights
● High settings on some assets
● Player graphics settings too high*

● Will run at 60 FPS, good job!
● Still can be networking problems creating rubber banding
● Also check the server for issues

(Less common, harder to profile)



Quick Performance Overview - Profiler (1)

Play Mode Profiler Documentation:
https://manticoregames.atlassian.net/wiki/spaces/CORE/pages/501121025/Play-Mode+Profiler

● Toggle open with F4 once enabled in the Game Settings Object. Note it only opens in local preview or on the 
live server for a published game.

● Captures information about the CPU & GPU threads contributing to Frame Rate, both for client and server.
● Very useful for identifying the broad source of performance problems, and especially to identify what the limiting 

factor is for your game performance - Game Thread CPU, Render Thread CPU, GPU, or Networking.
● Target 16.3ms Frame Time to reach ~60 FPS for your players.



Quick Performance Overview - Hierarchy View (2)

● Multiple stats about hierarchy objects can be viewed either in preview mode or just at edit 
time.

○ Game Thread Time - very helpful for catching pesky LUA scripts doing something 
inefficiently

○ Render Thread Time - helpful to identify expensive rendering processes or see 
expensive parts of the map. Note this is tied to the camera view.

○ Triangles - can be used at edit time, helpful to identify expensive meshes
○ Draw Calls - tied to material usage, another tool to identify expensive art assets
○ Load Time - Hit play to see the load time from various hierarchy elements

● Can view objects in the player in preview mode - this can be extremely useful as well!

Load Times

Game Thread Times



Quick Performance Overview - Server Logs (3)

● Access Server Logs if you are the publisher of a game
○ Publish unlisted to test on the live server.

● Print error messages to the server logs for help debugging 



18 Common Mistakes



#18 - Not Mesh Merging!

● Merging meshes will dramatically improve the frame rate for large, object heavy maps especially when many 
objects need to render simultaneously! See the Render Thread improvements below.

53ms

13ms



#17 - Too Many Shadows & Area Lights

● Shadows can be very expensive for GPU and CPU Render times - they are one of the easiest things to 
change to improve performance!

● Shadow casting lights are especially expensive 
● Especially, watch out for shadow casting area lights overlapping with lots of other lights!



#16 - Animating Collidable Objects

82% Savings!!

● High CPU cost associated with animating objects which still use collision (6x more!)
○ Note we changed client context folders to default with collision off as a way to mitigate this particular 

issue
● Recommendation - simply make sure anything which is animating has collision off!



#15 - Large Moving Triggers or Trigger Based Volumes

● Extremely high CPU cost associated with moving large triggers over areas which have “Interacts with Triggers” 
checked to be true

○ Note: we changed this setting to default OFF in order to mitigate the issue



#14 - Complex Player Attachments!

● Objects attached to the player are 
especially expensive - use these sparingly!

● If these objects have collision on them, the 
cost will increase CPU game thread costs 
dramatically - make sure collision (& 
camera collision) are turned off.

Early Hunter Costume from upcoming game



#13 - Single Player Preview vs. Live Server

● Single Player Preview - Client and server are the same princess and run at the same display framerate. There 
is no networking happening, you know everything immediately.

● Multiplayer Preview - Editor is the server and approximates a dedicated server, but only approximates. Still 
runs at display framerate. Clients won’t have lag or packet loss. This gets most of the way to a live server but is 
not 100% accurate and can still hide problems.

● Live Server - In the published game, server is running at 30hz and clients will have packet loss. Order and 
duration of script based processes can be potentially problematic. Very common problem is trying to do 
something to a player (i.e. equip something) before other scripts have loaded.

Single Player Preview Multiplayer Preview Live Server



#12 Outline Object & Callouts

18x cost!

● Depending on the complexity kitbash object, the “Outline Object” asset can be 
highly CPU intensive, especially if you’re duplicating the asset many times 
throughout the level!

● Other approaches can be equally effective at highlighting an object at a fraction 
of the cost, for example “Callout VFX”

Approach A:

Approach B:



#11 - Accumulating Listeners

● Stay mindful of “Listener” in the performance profiler - 
these can lead to large gameplay spikes as seen to the 
right.

● Scripts destroyed that are connected to equipment will 
stay in memory until the equipment is destroyed.

● Caching objects from server / client UserData like (x = 
object.serverUserData) that isn’t cleared out will stop 
Objects from being destroyed.



#10 - Lighting with Dynamic Shadows

EXPENSIVE

● Avoid increasing Shadow Cascade Count 
(distance shadows) to a high number as a 
quick fix for terrain shadow casting.

● Instead, use invisible objects to create 
distance shadows

○ Visibility on, invisible material

Okay!



#9 - Too Many Decals & No Draw Distances!

● Too many decals in an environment will drive up GPU 
costs significantly - in the case of Strike Team the map 
uses ~900 decals for the gritty urban atmosphere.

● Profiling the same location with an without any decals 
shows ~5ms delta to the GPU time.

● Recommendation: utilize the draw distance setting to 
turn off decals which wouldn’t be relevant given the 
player location (i.e. across the map) 



#8 - Overlapping Light Attenuations!

● High GPU Cost associated with overlapping light attenuations
○ Cost ramps up exponentially especially when shadows are used extensively

● Tempting to use overlapping lights, especially with area lights & spotlights which cover a large amount of visual space and 
look cool

● Guidelines - use lights intentionally and to evoke a specific effect. Monitor GPU costs to make sure things aren’t getting out of 
hand



#7 - Not Using UI Contexts!

● Extreme example: ~10k UI objects on screen in a dynamic context
○ Typically worth 1-3ms of CPU time in savings

● Large cost to the CPU thread under UI Tick Time
○ Note that Static Context will only update UI when called explicitly

Dynamic Context Static Context



#6 - High Triangle Counts

● Check triangle counts for objects, especially with curved 
surfaces, and make sure that you aren’t using more triangles 
than actually required for environment art!

● Recommendation - reduce to or find the minimal number of 
assets needed to create your environment!

○ If you’re really looking to optimize, find creative ways to 
express your art with the less expensive kitbashing!

Single Mesh vs Individual Planks Ring for “Rope” - could be reduced?



#5 - VFX, large Particle Size & Density

1

2

3

4

5

Particle 
Size

● Using only 5 VFX smoke volume objects you can easily tank GPU 
performance by increasing both particle density & particle size to make 
it look “thicker”

○ Examples below are 5x5x5, 25 density, and 1-5 particle size
● Particle simulation adds to game thread cost
● Guidance - use minimal values for density/particle size to get the same 

appearance



#4 - Missing Lifespans on Spawned FX

● When spawning SFX or VFX, especially for weapons and equipment, 
make sure that the hierarchy isn’t filling up with objects that don’t 
expire

○ Default lifespan is set to 0, so you need to enter this manually
○ Alternatively, it is good practice to clean up objects if you have a 

systematic approach for spawning them
○ Be sure to check both server & client!

● These objects will accumulate over time and eventually crash the game - 
essentially a memory leak. May be subtle at first!

● Also note that spawning in lots of objects for weapon FX (muzzle 
flashes, impact FX, etc.) can get very expensive quickly!



#3 - Too Many Mesh Objects!

● Aim for around 30,000 non-networked objects for your 
total map size. The actual number of objects depends 
greatly on the type of objects used.

○ 10k = Almost never an issue
○ 20k = Not an issue for most players
○ 30k = Can see perf issues for some players
○ 40k = Many players will have perf issues

● Mesh merging will help increase the number of total 
objects possible for your map.

● Most visible on the Render Thread CPU times



#2 - Incorrect Use of Networking Contexts!

Networked Contexts

Client Context - Networked context for anything which matters to the client, 
but does not require that all players see the exact same thing at the exact 
same time. VFX, UI, SFX, etc. are almost always in a client context.
Static Context - Used for spawning in chunks of collision without individually 
networking the meshes.
Networked Context - The most precious commodity for multiplayer games! 
Used for gameplay critical elements which need to be synchronized for all 
players in the game, for example a soccer ball which all players can interact 
with in a game.

Common mistake involves having more networked than is actually necessary 
- this will lead to rubber banding and other lag issues!

Could be in Static Context!

Correct! Very Incorrect & Terribly Expensive!!!



#1 - Assumptions about Player Count!

Player 1 Network Object

SERVER SERVER

SERVER

4x

25x

1x

Player 1 Network Object

Player 2 Network Object

Player 1 Network Object

Player 2 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

● Cost scales quadratically with player count!
● Consider what happens in a *full game* with 

your desired player count
● Scene networked objects scale linearly



#1 - Assumptions about Player Count!

Player 1 Network Object

SERVER SERVER

SERVER

4x

25x

1x

Player 1 Network Object

Player 2 Network Object

Player 1 Network Object

Player 2 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

Player 1 Network Object

Player 2 Network Object

Player 3 Network Object

Player 4 Network Object

Player 5 Network Object

● Cost scales quadratically with player count!
● Consider what happens in a *full game* with 

your desired player count
● Scene networked objects scale linearly



The Real #1

Be mindful of things which don’t impact the Player Experience, but are expensive 
for game performance. Use common sense!
● Does the player care about X/Y/Z?
● Is there a cheaper version of X/Y/Z which creates an equivalent player 

experience?
● What can I pull out of my game without the experience toppling over



Useful Tools!



FPS Tracker - Coming soon to CC!

FPS Tracker - average out FPS for high level adjustment
(will be available on Community Content!)

● Great to use for simple A/B comparisons or high level assessments of 
frame rates for games

● Use “/fps show” to turn on the panel
● Use “/fps reset” to start the clock back at 0
● Tracks a few categories:

○ Time since load
○ Current FPS
○ Overall min/max FPS
○ Average FPS since load (very useful!)
○ Last 5s average (very useful!)
○ Last 5s min/max



Performance Mapper

Performance Mapper Tool
(will be available on Community Content!)

● Tracks and stores player data over time for frame rate given a 
specific location on that map.

● Colors correspond to the quality of the frame rate for all 
accumulated data.

● Great for testing a large, complex map with lots of potential 
“hotspots” suffering from worse performance.

○ Utilize chat commands to download, clear, display 
data 



Other Misc Tips!



Low Fidelity Versions (part 1)

Use high fidelity and low fidelity versions of complex assets (tanks!)
● For your own tank, render the high fidelity version (more objects, better VFX, etc.)
● For other player tanks, typically far away, use a lower fidelity model with fewer overall 

objects.
○ Check if you have the local player and equip the corresponding object.



434 objects total

271 objects total

~.4ms faster
(-161 objects)

#15 - Low Fidelity Versions (part 2)



UI Tick Time Breakdown

Profiler Tool & UI Tick Time
● Note that the “UI Tick Time” field has a cost associated 

with having the profiler open (~2-4ms) to actually render 
the UI visuals. This is categorized under the Game Thread 
CPU time.

● When closed, this cost is not incurred - although there is a 
very small cost to having it activated in your game 
generally.

● Therefore - you should be aware that the Game Thread 
CPU time is actually lower than displayed in the 
aggregate ms count. It may be better to optimize the 
render thread before the game thread given this 
information.



Questions!


